Object Detection Using Contour Fragments

نویسندگان

  • Xiaofeng Zhang
  • Qiaoyu Sun
  • Yue Lu
چکیده

In this paper, we present a novel object detection scheme using contour fragments. The template fragments are extracted by decomposing the template contour. The hinge angle, contour direction and partial Hausdorff distance (PHD) are used to match the fragments in the edge image. Then, the Multiclass Discriminative Field (MDF) is used to select the matches. With these selected matches and their corresponding template fragments, the contours of the objects can be obtained. The experiment on our postmark dataset shows that the proposed scheme is robust to detect a class of objects with different scales, directions and clutter edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Object Detection Based on Multi-scale Contour Fragments

In this paper, we present a novel object detection scheme using the multi-scale contour fragments. The template fragments are extracted by decomposing the template contour. The multi-scale hinge angle, contour direction and partial Hausdorff distance (PHD) are used to select candidates in the edge image. Then, the matches with different scales and directions are selected by the Multiclass Discr...

متن کامل

Contour based object detection using part bundles

In this paper we propose a novel framework for contour based object detection from cluttered environments. Given a contour model for a class of objects, it is first decomposed into fragments hierarchically. Then, we group these fragments into part bundles, where a part bundle can contain overlapping fragments. Given a new image with set of edge fragments we develop an efficient voting method us...

متن کامل

Object Detection Using Hausdorff Distance and Multiclass Discriminative Field

In this paper, we present a novel object detection scheme using only local contour fragments. A sample fragment extraction method decomposes a whole contour into several parts. Then, the candidate locations of corresponding fragments in test images are detected by a modified Hausdorff distance with punishment on clutter edge regions. The most probable locations are selected by Multiclass Discri...

متن کامل

Discriminative Learning of Contour Fragments for Object Detection

The goal of this work is to discriminatively learn contour fragment descriptors for the task of object detection. Unlike previous methods that incorporate learning techniques only for object model generation or for verification after detection, we present a holistic object detection system using solely shape as underlying cue. In the learning phase, we interrelate local shape descriptions (frag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012